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i0. 

SUPERCRITICAL FLOWS FROM BENEATH A SHIELD 

V. I. Nalimov UDC 532.59 

The theory of motion of an ideal incompressible heavy liquid with free boundaries is 
a unique branch of classical hydrodynamics. Interest in such flows exists first, because 
of their great practical importance and, second, because of the richness, uniqueness, and 
difficulty in mathematical description of the problems which develop. Many studies have 
been published concerning precise solutions of the steady-state equations of motion of a 
vortex-free liquid with free boundaries. Proof of the existence of traveling waves was first 
offered by Nekrasov in 1921, then independently by Levi-Civita in 1925 for an infinitely 
deep liquid. Later, Struik, followed by Nekrasov, established analogous theorems for liquids 
of finite depth. It was assumed in their studies that the flow was subcritical, i.e., that 
the velocity of the main flow was less than the propagation velocity of infinitely low ampli- 
tude waves. In the 1950s a number of studies appeared on steady-state supercritical flows. 
Works by Zherbe, Moiseev, and Ter-Krikorov proved the existence of supercritical waves above 
a rough periodic bottom. Information on these and other studies on the same theme can be 
found in [i, 2]. In 1982, the existence of subcritical flows about a rough aperiodic bottom 
was established [3]. The existence of combined waves was first strictly proven by Lavrent'ev 
[4] in 1946 using the variation principles of conformal and quasiconformal transform theory 
which he developed. Another method of proof was proposed in [5]. Both proofs are based 
on principles of nonlinear shallow wave theory and show that this theory can be used for 
asymptotic representation of precise solutions of the combined wave problem. If we admit 
the possibility of contact of the free surface with rigid boundaries, the corresponding non- 
linear boundary conditions become much more complicated. The present study will examine 
the two-dimensional problem of flow of a heavy vortex-free ideal liquid from underneath a 
planar horizontal lid over a smooth horizontal bottom. The flow is assumed supercritical: 
U > ~, although the characteristic flow velocity U is assumed to differ little from the 
critical velocity V~0 (where g is the acceleration of gravity and h 0 is the characteristic 
liquid thickness). We will find the approximate form of the free surface and present a meth- 
od for proving the existence of flows that are not uniform. It is thus just this fact which 
justifies the approximate solution. The problem to be formulated herein differs greatly 
from that of the combined wave. Nevertheless, the method of study to be presented below 
has much in common with that proposed by Friedrichs and Heyers [5]. 

i. Formulation of the Problem. To describe the liquid flow we choose as independent 
variables [i] the dimensionless velocity potential ~ and flow function ~. Such a choice 
of variables allows us to operate in a fixed belt between two flow lines ~ = const rather 
than in a partially unknown flow region. As is well known, the complex velocity potential 
X = ~ +_i~ is an analytical function of the variable z = x + iy. The conjugate complex ve- 
locity w = dx/dz is also an analytical function of z. After the substitution w = exp {-i(e + 
it} the problem of liquid flow is reduced [i] to search for an analytic function % + it of 

b 

Novosibirsk. Translated fromZhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 77-81, March-April, 1989. Original article submitted August 18, 1988. 

238 0021-8944/89/3002-0238512.50 �9 1989 Plenum Publishing Corporation 



the variable X in a unit horizontal band, with boundary condition 85 - l exp {-3~} sin8 = 0 
, !  , !  _ > �9 -- - 2 �9 -- on the free surface ~ - i, ~ 0 with constant k - gh0U (without loss of generality, 

we assume that the point of contact of the free surface and lid transforms to a point ~ = 0, 
$ = i). Since on the bottom and lid the angle of inclination of the flow velocity should 
coincide with the angle of inclination of the tangent, we have 8 = 0 at @ = 0 and ~ = i, 
~i. 

It is assumed that k = 1 - e2~02/3 (e is a small parameter, ~0 > 0). In other words, 
the basic flow is assumed supercritical, but differing little from critical. It will be 
desirable to make the replacement of variables used in shallow-water theory x = s~, y = 
and take 

F (u,  v, e) = e - 5  ( l  - -  e i ~ g / 3 )  ( e x p  {--  3sir} sin e3u - -  e3u) = - -  3uv + eiF~ (u, v, ~) 

with the function 

(i.i) 

T' 1 (u, v, e) ---- 3p~uv + u (exp {--  3e"-v} -~ 3elu - -  t) -~ 

+ e-7 (1 - -  e21~/3) exp {--  3e2v} (sin eau - -  e3u). 

In the new notation the original problem is reformulated as one of finding in a plane -~ < 
x < =, 0 < y < i pairs of functions (u, v) from the system 

uy ~ Yx = O, e iUx- -Uy  ~ 0 

w i t h  b o u n d a r y  c o n d i t i o n s  on t h e  " s o l i d  w a l l s "  

(1.2) 

u = 0 ( y = 0 ) ;  u = 0  ( y = l , x < 0 )  

and c o n d i t i o n  on t h e  " f r e e  s u r f a c e "  

(1.3) 

U y - - ( i - - e i H g / 3 ) u = e i T ' ( u , u , e )  ( y =  l , x > 0 ) .  ( 1 . 4 )  

S i n c e  t h e  f u n c t i o n  v " c o n j u g a t e "  t o  u c an  be f o u n d  o n l y  t o  t h e  a c c u r a c y  o f  an a r b i t r a r y  
c o n s t a n t ,  i t s  u n i q u e  d e t e r m i n a t i o n  r e q u i r e s  an  a d d i t i o n a l  c o n d i t i o n .  We as sume  t h a t  

,(x, y ) - ~ 0  (x-~ ~) .  ( 1 .5 )  

With the given function ~(x) = u(x, i), from system (1.2) with boundary condition u(x, 
0) = 0 and condition (1.5) at infinity the functions u(x, y) and v(x, y) can be uniquely 
reconstructed. Therefore, for further solution of the problem of Eqs. (1.2)-(1.5) we will 
term the function ~(x) [or the pair ~(x), ~(x) = v(x, i)]. 

2. Approximate Solution. In [6] the boundary problem of Eqs. (1.2) and (1.3) was stu- 
died with boundary condition 

u u - ( l - e ~ D g / 3 ) u = e  2 ] ( x , e )  ( y = i , x > 0 )  ( 2 . i )  

and  f o r  t h e  f u n c t i o n s  ~ ( x )  = u ( x ,  1 ) ,  ~ ( x )  = v ( x ,  1) i n  t h e  r a n g e  0 < a g 1 /2  t h e  f o r m s  

were found. 

(p(x) --- A/(x,  O) -}- A(/(x,  e) - - / ( x ,  0)) + el-=N(e)](x, e), 
r = --D-l~(x) + ~I-=K(~)~(x) ( 2.2 ) 

These expressions consider the condition (1.5) at infinity and use the notation 

D - I ~  (x) = - -  S ~ (x) dx. 
x 

The function w = Ah at x > 0 is a solution of the boundary problem 

- -  w" (x)  + Vgw (x)  = 3 h  (x) ,  w (0)  = w ( co )  = 0 ( 2 . 3 )  

and v a n i s h e s  a t  x ~ 0.  The i n t e g r a l  o p e r a t o r s  N and K a c t  i n  t h e  i n d u c e d  s p a c e s  o f  t h e  func .  
tions of the problem of gqs. (1.2), (1.3), and (2.1), which will be defined below. 

The set of functions exponentially decaying with exponent p e 0 defined on the entire 
R axis and having a finite Holder Ca-norm (0 E a ~ I) will be denoted by Ea(p), and the norm 
will be introduced by the equation 

239 



i] u (x)][E~(0) = If U (X) exp {p Ix [} ~c~m, ( 2 . 4  ) 

Ea+(O) i s  t h e  s e t  o f  H o l d e r  f u n c t i o n s  e x p o n e n t i a l l y  d e c a y i n g  on  t h e  p o s i t i v e  s e m i a x i s  R +, 
for which norm (2.4) is finite With R + in place of R' ~+(p)is the s~t of functions from 
E~+(0) equal to zero at x = 0. It is clear that ~+(~)can be identified with the subspace 
of the functions from E~(0) equal to zero at x ~ 0. 

It was shown in [6] that for 0 < fl < V0, 0 < ~ ~ 1/2 and sufficiently small 0 < ~ < 
~0(~0, P), the operator N(e) acts from the space E~+(p) into the space ~+(0) and its norm 
over e is limited by a constant dependent on V0 and 0 only. The singular integral operator 
at 0 < ~ < 1 acts at these e and p < ~[e - 6 from the space E~(0)into itself. Its norm 
is uniformly limited by a constant dependent only on 6 > 0, ~, and e 0. Therefore, below 
we will assume that 0 < ~ ~ 1/2, 0 < ~ < V0, 0 < e < e o and the number ~0 will be chosen 
such that these properties of the operators N(e) and K(e) will be satisfied. 

The o~erator A is independent of s. It acts from the space E=+(p) at 0 < ~ < v0 into 
the space ~+(~) and is finite. Its norm depends on B0 and p. 

If we denote on the spaces introduced by V, then we can easily verify the estimate of 
the product HuvH V ~ C(fl)Hu[IvIIvNv, which permits estimation of the norms of the entire ana- 
lytical complex functions of the type of Eq. (i.i) in the spaces introduced. More precise- 

ly. if F(0) = 0 and the series ~ Aj==F(0 converges for all t = (ti ..... tm), then for 
I~;>0 

the complex function 

[1F (~)llv ~< E C '=I (p)[ A~I X% X = ([iv, Ilv . . . . .  ~'.~ IIv). ( 2 . 5 )  
t~zl>o 

Further, let ~ be a solution of Eqs. (1..2)-(1.5) and ~(X) = u( x, l)e ~+(0). On the 
basis of the above, there follows from Eq. (2.2) the equality v(x, i) = -D-l~(x) + o(e) 
and, therefore, for y = I, F(u, v, e} = 3~D-�92 + o(E). Again, from Eq. (2.2), ~(x) = 3A" 
(~D'IT) + o(E). It is clear that the approximate solution ~0 (x)of Eq s. (1.2)-(1.5) must 
be found from the integral nonlinear equation ~0(x)= 3A(~0Drl~0): or the equivalent boun- 
dary problem of Eq. (2.3.) 

" 2 
- -  q% + ~to(po : 

This equation coincides with the equation of combined waves. 

3 Sh IloXL~ 3 ~o x % ( x ) =  - -  ~to . . - ~ F , ,  - 2 - '  

and can  be  f o u n d  f rom Eq. ( 2 . 6 )  a f t e r  t h e  s u b s t i t u t i o n  D-~r 

3%D'ITo,  ~oi(0) = ~ o ( ~ ) =  0. ( 2 . 6 )  

Its solution is well known: 

( 2 . 7 )  

= W. 

3. Exact Solution. The problem of Eqs. (1.2)'-(1.5) differs greatly from the combined 
wave problem. Its rectilinear expansion in powers of e, used in the narrow-band method to 
construct an asymptotic solution, will not function here, since the solution will undoubted- 
ly not be smooth at the point x = O, y = i. Therefore, to justify approximate solution (2.6) 
it is necessary to prove the existence of a precise solution having the required properties. 
It can easily be seen that the function %, extended onto the negative semiaxis is piecewise- 

:smooth and belongs to the space ~i/2+(B0). Therefore, the number ~ figuring in the considera 
~iions of the preceding section, will be taken equal to 1/2 below. 

With consideration of Eq. (2.2), the solutions, ~ of Eqs. (1.2)-(1.5) has the form 

~(x) = %(X) + 8~/2~(x), ~(x) = --=D-l~(x) + #/2K(8)~(x). 

If these expressions are substituted in boundary conditions (l.4) and Eq. (2.2) is used, 
then the problem of Eqs. (1.2)-(1.5) is reduced to search for a solution qe ~i/2+(p), p < B0 
of the nonlinear integral equation 

~] = 3A(~ID-~q)o + q)oD-1Tl) + F~(q~o, 8) + 81/~Fa(~l, q)o, 8), 

w h e r e  F2(q)o, 8) = 3A(--q3oK(8)*, % + N(e)(q)oD-lq)o)); 

( 2 . 8 )  

F3(q3o, 8) = 3AO1D-hl --  ~lK(e)~ --  (poK(e)*]) +8-1/2AN(8)• 
• (F((p, up, s) - -  3q~oD-'~o ) + 8AFI((O, ~p, 8). 
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Equation (2.8) can easily be written in a more convenient integral form, if we transform 
the portion linear in q. For this purpose we must consider the differential equation -w" + 
~02w = 3wD-1~0. For x > 0 the function ~0(x) is its solution. With the aid of the well-known 
approach of reduction in order one can find a second solution ~(x) such that ~'(0) = 0, 
~m'~0 - ~m~0' = i. Using the functions ~ and ~ we construct the operator 

Mg (x) = ~'o (x) S r (t) D"1% (t) D~ (t) dt -~- (p'~ (x) ~ % (t) D'1% (t) D-Zg (t) dr. 
0 x 

As was shown in [6],  functions of the form of Ah and N(e)h vanish at x = 0. Using the 
definition of Eq. (2.3) for the operator A, Eq. (2.8) can be written in the equivalent form 

=MF2(~o, e) + et:MF3(q, %,e) ( x ~  0). (2.9)  

It can easily be proved that ~0, D-l~0 ~ exp {--~0x}, ~I - exp {~0 x} as x ~ ~ Therefore, 
as follows from [6], the operator M acts from the space Ez/2+(p) at p < ~0 into the space 
E1/2+(p) and is finite. From the estimates of the operators A, N(g) and K(r performed in 
[6], and estimates of the complex function (2.5) we have the inequality uniform over r 

[0 < r < ~o(~o, P)] 

11 MF~ (%, e)IjE~2(o) ~ B < ~ .  

Similarly it can be proved that for all q, nl from the sphere 

{ *  2(p)~ 2R} B2, = q ~ E ~  (9) [l n -- MFe (%, e)IIE~ 

the funct ions  MFa(o, ~0, ~) are uniformly l imi ted  over IIMFs(n, ~0, ~)llEx/z+(p) ~ Ca.(R), and 

the Lipshitz condition 

is also satisfied. Therefore, for sufficiently small r the transformation ~ + MF2( %, e) + 
el/2MF~ (N, %, e) acts from the sphere B2R into itself and is compressive. According to 
the fixed point theorem, Eq. (2.9) has a unique solution. Therefore we have the following: 

THEOREM. For sufficiently small e the problem of Eqs. (1.2)-(1.5) has a nontrivial 
solution and 

u (x, ~) ~ ~ (~), v (~, l )  ~ E~/~ (~) 

for  9 < ~0. The approximate so lu t ion  is given by Eq. (2 .7) .  In other  words, to the accu- 
racy of terms of order r the solution of the problem of Eqs. (1.2)-(1.5) at y = i, 
x = 0 behaves like half a corresponding combined wave beginning from the point of symmetry. 

Since the solution of the problem of Eqs. (1.2)-(1.5) belongs to the Holder space with 
exponent 1/2 and no higher, the form of the free surface on the physical plane is continually 
differentiable and its derivative belongs to the same Holder space. The free surface curva- 
ture has a singularity at the point of contact with the lid. 
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